| REUK Shop | REUK Blog | Directory | About Us  |  | RSS Web Feed for Renewable Energy UK 

Make a Simple Battery Status Monitor



Make A Simple Battery Status Monitor

Monitor battery status with this easy electric circuit project - no skill required!

home > storage | electric circuit
   Printer Friendly Version Print Article     

It is essential that the battery bank in a renewable energy system is well looked after. This means that the voltage of the battery bank must be known. It can be easily measured with a multimeter or a voltmeter, however a fun and inexpensive project is to make a very simple battery status monitor.

In a typical 12V system the voltage of the battery bank can fluctuate from 10.6 Volts (below this the battery is very dead) when heavily depleted and under load, to as much as 15 Volts when being heavily charged. A healthy full 12V battery bank would usually have a voltage of around 12.6 Volts when not under a load and between 13-14 Volts when being charged correctly - i.e. not too quickly. Therefore it would be interesting to have an indication of the status of the battery bank using an LED to show if it is being charged.

For this example we will use the arbitrary figure of 12.6 Volts to indicate battery bank under charge however this could value could be set lower or higher according to your own needs and system configuration.

The Battery Status Monitor Introduction

The status monitor uses a Zener Diode, a Light Emitting Diode (LED), and a Resistor - components which can be bought for pennies each.

Each Zener Diode has a specified Zener voltage. If the voltage in the circuit is greater than the Zener voltage, then the voltage drop (ie. the voltage reading across the diode) is equal to this Zener voltage. However, if the voltage in the circuit is less than the Zener voltage then no current flows. Therefore, if you put a Zener diode in series with an LED in a circuit, the LED will light if the circuit voltage is greater than the Zener voltage plus the voltage drop across the LED.

Making the Battery Status Monitor

We want our LED to light when the voltage of the 12V battery bank is 12.6 Volts or higher to indicate the batteries are being charged by our renewable energy set-up. Let's use the following components:

1 x 8.2 Volt Zener diode.
1 x standard green LED (Specfications: maximum current 30mA, voltage drop 2.5 V).


In order to make the LED last as long as possible we will not use the maximum current - instead we will aim for around 15mA.
The total voltage drop across the Zener diode and LED will be 8.2+2.5=10.7 Volts. A resistor is therefore required to prevent too much current getting to the LED and destroying it. The difference between the battery bank target voltage of 12.6 Volts, and the voltage dropped by the Zener and LED of 10.7 Volts is 1.9 Volts. These 1.9 Volts must be dropped across a suitable resisitor with a current of no more than 15mA - therefore using Ohm's Law we find that resistance = 1.9 Volts / 0.015 Amps = 127 Ohms coincidently the exact value of a manufactured resistor. Normally you would select the resistor with the nearest value above the resistance value calculated with Ohm's Law.

Therefore add to the parts list for this project:
1 x 127 Ohm Resisitor.

Choosing Correctly Power Rated Components

We now need to check the power dissipated in the Zener diode and resistor at different voltages so we can select suitably rated components, and check that the current flowing through the LED when the battery bank is at its maximum voltage is below the manufacturer recommended maximum.

If the battery bank were to hit 15.5 Volts the voltage drop across the Zener diode would remain fixed at 8.2 Volts and the drop across the LED at 2.5 Volts, therefore the voltage drop across the resistor would increase to 15.5-8.2-2.5=4.8 Volts. Again using Ohm's Law we find that the current through the resistor (and therefore through the LED) will rise to 4.8 Volts / 127 Ohms = 38mA. This is a little over the manufacturer recommended maximum current however, if your 12 Volt battery bank is regularly at 15.5 Volts the expense of replacing your little LED a couple of years early will pale into insignificance compared to the cost of the damage to your battery bank!

At a current of 38mA the power dissipated by the Zener diode will be 8.2 Volts * 0.038 = 0.31 Watts, and the power dissipated in the resistor will be 4.8 Volts * 0.038 = 0.18 Watts. Therefore a 500mW rated 8.2V Zener diode and a 1/4 Watt 127 Ohm resistor will be perfect.

Putting the Battery Status Monitor Together

There is no need to worry about soldering this together - the legs of the LED, resistor, and Zener diode can simply be twisted together. The last item you will need is:
1 x Length of One Amp bell wire (split along its length into two pieces of wire).
..which is very cheap - or you can cannibalise any other single-core insulated wire you have lying around. With a maximum current of 40mA flowing through it the wire does not need to be thick, but it is best to always use insulated wire to prevent accidently short-circuiting the battery bank.
Green LED

The short leg on the LED (pictured above) is the cathode and is connected with the wire to the negative terminal of the battery.

Zener Diode

The cathode of the Zener diode (pictured above) is marked with a stripe (silver in this example), however Zener diodes are placed into circuits in reverse, so next connect the positive anode (long leg) of the LED to the positive (no stripe) end of the Zener diode.
Finally the cathode of the Zener diode is connected to one leg of the resistor, and the other leg of the resisitor connected to the positive terminal of the battery bank with wire.

The green LED of the completed simple battery bank status monitor will now remain lit as long as the battery bank voltage stays above 12.6 Volts.

Developing the Battery Status Monitor Further

This battery status monitor could not be more basic - it just indicates when the batteries have 12.6 Volts or more. However it would be very simple to extend the monitor to include an over-charge warning indicator when the voltage reaches say 14 Volts, and a battery healthy indicator which is lit as long as the voltage is over say 11.8 volts.

Simply recalculate the values of resistor and Zener diode required for each additional monitor and join each string of components in parallel to the battery to be monitored. The whole thing can be soldered together and built into a suitable box with the LEDs labelled so that everything looks tidy and you have a project to be proud of!

Buying Zener Diodes

Mixed packs of Zener diodes are available in the REUK Shop.



Article Last Modified: 20:42, 23rd Jun 2013

Comment on this Article

If you have any comments on this article, please email them to neil@reuk.co.uk.


Related REUK Categories

storage | electric circuit
2006-2014 REUK - All Rights Reserved
Page Last Updated on 18th April 2014 at 04:00:50pm

Site Search


Recent
Blog Posts


1.Dawn Dusk Automatic Hen House Door Controller

2.Automatic Low Voltage UPS Shutdown

3.Raspberry Pi GPIO with BerryIO

4.12V Programmable PIR Timer with Override

5.Arduino SD Card Datalogging

6.Automatic Horse Feeder Controller

7.Mains Backup for Solar Charged Battery Bank

8.Automatic Car Windscreen Heater Timer

9.Adjustable LM317 Power Supply

10.PICAXE Arithmetic Problems


Latest
Articles


Publish Temperature Sensor Readings to Twitter Raspberry Pi
Publish Temperature Sensor Readings to Twitter Raspberry Pi
Find out how to publish DS18B20 temperature sensor readings to Twitter from Raspberry Pi


Solar Panels on eBay
Solar Panels on eBay
Find out about the solar panels on sale on eBay


Low Voltage Battery Disconnect Circuits
Low Voltage Battery Disconnect Circuits
Find out more about low voltage battery disconnect (LVD) circuits - used to protect batteries


Picaxe Programming From Linux
Picaxe Programming From Linux
Find out how to programme PICAXE microcontrollers from the Linux command line


Connecting to Raspberry Pi from PC via SSH
Connecting to Raspberry Pi from PC via SSH
Find out how to operate a Raspberry Pi directly from a Windows PC using SSH


Setting up Static IP Address on Raspberry Pi
Setting up Static IP Address on Raspberry Pi
Find out how to give your Raspberry Pi a static IP address


New Simple Hen House Door Controller
New Simple Hen House Door Controller
Details of our new 2013 simple design for an automatic hen house door controller


Raspberry Pi Temperature Logger with Xively
Raspberry Pi Temperature Logger with Xively
Make a Raspberry Pi temperature data logger accessible online with Xively




REUK Shop

Popular Items


2013 SOLAR PUMP CONTROLLER WITH RELAY
New solar water heating pump controller with fitted 10A relay
£25.99 each.



MINI 12 VOLT REGULATOR WITH FUSE AND SWITCH TERMINALS
Supply a fixed 12.0 Volt DC to your devices (up to 1 Amp output). Includes fitted 1A fuse, 2 spare fuses, and terminals for connection of a switch
£6.99 each.



REUK MINI LDR DUSK DAWN LIGHTING CONTROLLER
Multi-function light detector triggered light/dark dawn/dusk controller
£13.95 each.



MINI 12V PROGRAMMABLE LOW VOLTAGE DISCONNECT LVD
Protect your 12 volt batteries from being overly discharged
£12.95 each.



REUK SUPER TIMER 3 MINI
Mini multi-functional timer
£13.95 each.



12 VOLT REGULATOR
Supply a fixed 12.0 Volt DC to your devices (up to 0.8 Amp output)
£3.99 each.



MR16 CERAMIC BULB HOLDER
Bulb holder for 12 Volt LED spotlight bulbs
£1.39 each.



REUK SUPER POULTRY LIGHTING CONTROLLER
Control up to 8 Watts of LED spotlights to stimulate egg production in birds
£29.99 each.



300 WATT POWER INVERTER
Convert 12V DC battery power into 230 AC to power portable televisions, computers, video recorders etc. 300 Watt power rating - peak power 600 Watts
£29.99 each.