Intel Curie tinyTILE – Mini Arduino 101

intel curie tinyTILEPictured above is the new tinyTILE development and production platform featuring the Intel Curie module. This board is a miniature version of the Arduino 101 and measures in at just 35 x 26mm (1.38 x 1.02 inches), and has been designed to fit on prototyping breadboards.

The tinyTILE board can be programmed using either the Arduino IDE or Intel’s own software – the Intel Curie Open Developer Kit (ODK), and the I/O connections are functionally identical to those on the Arduino 101.

With its small size, low-power consumption, array of motion sensors (6-axis sensor with accelerometer and gyroscope), and Bluetooth Low Energy (BLE), tinyTILE should be ideal for battery powered wearable devices and any other IoT projects involving motion monitoring.

tinyTILE has a 32-bit 32 MHz Intel Quark SoC, 384 kB flash memory, and 80 kB SRAM. It also includes a digital signal processor (DSP) offering quick pattern matching identification of actions and motions.

tinyTile can be USB powered via its micro-USB connector. The board has its own internal 3.3V regulator and 3.3V (but 5V tolerant)  I/0 connections.

tinyTILE is available now from element14.com (US+) and cpc.farnell.com (UK) amongst others.

Timer for Poultry Egg Incubator

Pictured below is a timer we built to accompany a Poultry Egg Incubator Controller we made recently.

timer for poultry egg incubatorWhen incubating eggs it is very important to keep track of the time since they were laid since, for example, eggs must be turned regularly until the last few days before hatching, and for some eggs the temperature and humidity ranges need minor adjustments during the incubation period.

Our timer is 12VDC powered like the incubator, and has a display to show the elapsed time since it was last manually reset. The time is shown in days:hours:minutes:seconds format.

Since eggs take anything up to 6 weeks to hatch, the time elapsed is stored in memory on the timer microcontroller every 15 minutes so that if the power to the timer is cut for any reason (e.g. flat battery or accidental disconnection of one of the power leads), when the timer is reconnected to power, it will restart from within no more than 15 minutes of where it was before the power cut.

After incubation has finished, a reset button (Reset Button 1) must be pressed for 1 second to reset the timer to 0:00:00:00 ready for the next lots of eggs to go into the incubator.resetting poultry egg incubator timer

This timer is built around an Arduino Pro Mini. The microcontroller with its on board crystal keeps time well enough for this application. (If more accuracy was required we would have added a real time clock (RTC).). Reset Button 2 on the timer resets the internal clock which is limited to 4,294,967,295 milliseconds (just under 50 days) – plenty of time for pretty much everything up to ostrich eggs, but not long enough for emperor penguin, albatross, and some cuckoo eggs. For exotic eggs with very long incubation periods, an RTC would need to be added.

If you need a timer or a poultry incubator controller, email neil@reuk.co.uk with details of your requirements.

Poultry Egg Incubator with Humidity Sensor

Pictured below is a controller we recently made for use in a poultry egg incubator, designed to keep eggs within a very narrow specific temperature and humidity range for a few weeks. This is achieved using a heater, a fan, and a humidifier.egg incubator with humidity sensor, fan, heater, and humidifierThe eggs need to be turned at least three times per day every day except for the last few days before hatching. Previously we made a Controller for Poultry Incubator which had a motor which was turned on and off at different times of the day to turn the eggs. For this new incubator, the motor used is a very slow turning 12 VAC device makes 6 full rotations every 24 hours. That motor therefore did not need to be controlled with a timer – it is just left running at all times.

egg incubator controller status summary displayThe display for this controller shows the current measured temperature from the waterproof DS18B20 digital temperature sensor (read at 12 bit resolution = 0.0625°C resolution), and the humidity from a DHT11 sensor (within 5% accuracy). The DHT11 actually has a built in thermistor, but its temperature measurements are nowhere nearly accurate enough for this type of project.

The bottom line of the display shows the three devices being controlled – heater, fan, and humidifier respectively. In the image above, the heater is marked as being on. If the humidity level gets too low, the humidifier will be switched on. If the temperature gets too hot, the fan will turn on (and of course the heater will already be turned off by then).

Setting humidity range for poultry egg incubator

The user has full control over the thresholds at which the heater, fan, and humidifier will turn on and turn off. The temperature thresholds for the heater and fan can be set in steps of 0.2°C, and the humidity thresholds in steps of 2%.

For example, the heater could be set to turn on at or below 36.4°C and off again at or above 38.4°C. Then the fan could be set to turn on at or above 38.6°C and off again at or below 37.4°C. Humidity should ideally be around 60% (raising to 65% just before hatching), so the humidifier could be set to turn on at or below 56% and off again at or above 64% relative humidity.

display for egg incubatorWith all the thresholds programmed in by the user according to the requirements of the particular type of eggs to be incubated, a button can be pressed to show in turn the values programmed in – for example, above the humidifier is shown to be set to turn on at or below 43% RH and turn off at or above 70% RH.

Feb 2020 – We have now released the full Arduino sketch (source code) for this device here: http://www.reuk.co.uk/wordpress/full-arduino-code-for-poultry-egg-incubator-with-humidity-sensor/

If you need any kind of egg incubator controller (or the electronics for a temperature and humidity controlled humidor – functionally pretty much identical to an incubator!) – please email neil@reuk.co.uk with details of your specific requirements.

User Programmable Target Shooting Controller with Display

Pictured below is a target shooting controller which we recently made for a shooting club in Australia.

programmable shooting target controllerWe had previously made them a controller with fixed time series – for example, Standard Pistol 150s, 30s, and 10s, Centre Fire face target 3s then away for 7s repeating 5 times, and Rapid Fire 8s, 6s, and 4s. Other clubs in the area required something similar, but with flexibility in the timings.

shooting target controller display - start seriesWe therefore enhanced the software written for the original controller so that all of the different time series could be modified, reducing or increasing the time that the target faced the shooter by the operator at the range to meet specific and potentially changing needs.

shooting target controller display modify series timingWhen the start button is pressed, the target turns away from the shooter. After 7 seconds the on board buzzer sounds for half a second and the target faces the shooter. (An external 12V buzzer or siren can be connected to the terminals on the controller board if a louder sounds is required). After the user programmed time, the target turns away from the shooter (again accompanied by the sound of the buzzer), and then a further 7 seconds later, the target is turned back to face ready for the next shooter.

NEW – We now also produce a modified version of this controller which allows the operator to set the edge times of the target independently for each of the series instead of using a fixed 7 seconds for all of them.modify edge times for shooting target controller modify face and edge time for shooting timer controller

Order a Controller

If you need any kind of shooting target timer controller, please email neil@reuk.co.uk with your specific requirements. (Click here to view some of the turning target and other shooting timers we have supplied in the past.)

 

Target Shooting Timer Example Instructions

programmable target shooting controller with display

Pictured above is the version of this shooting target timer controller which we currently sell. It is physically smaller, but otherwise functionally identical to the original, and the connections are the same as per the photographic diagram at the top of this post.

On the controller there are two buttons. Press button1 (Down) to run the currently displayed series. Press and hold button2 (Up) for more than half a second to be able to select from the seven saved series (using button1 to go down and button2 to go up through the list).

The device is fitted with a 10A rated SPDT relay with NO, COM, and NC connections. It has the relay energised when the target is to be faced, and de-energised when the target is to be edged. You can therefore wire things up whether your solenoids need to be powered to face the target, or need to be powered to edge the target using the NO-COM or NC-COM connections respectively.

When a series has run to completion, the target will edge, the screen will go blank for 7 seconds and then the target will face with the controller reset and ready to be run again.

In order to modify any of the timings of the seven pre-programmed series, press and hold button1 for 5 seconds or longer. Then, use button1 to decrease the number of seconds for the selected series, or button2 to increase the number of seconds. The value will be shown on the screen as you increase or decrease it. After five seconds of inactivity (no button presses), the new displayed value will be saved under the name of the selected series – e.g. Standard Pistol 150s could become Standard Pistol 125s or whatever you have set it as.

The maximum time limit is 254 seconds for any series – e.g. you could set Standard Pistol 254s, but you could not set Standard Pistol 255s or higher.

Five Channel Digital Thermometer

Pictured below is a five channel thermometer which is destined to be used as a part of a ground source heat pump heated underfloor heating system in Cyprus.

five channel thermometer for ground source heatpump

display for five channel digital thermometer

This system has an 11kw ground source heat pump with a 160 litre hot water cylinder (HWC). Soon 4 square metres of solar thermal panels will be added to heat a 300 litre thermal store (TS). The whole system has been put together by an experienced plumber using tapstats to control the flow of heated water depending on its temperature – no electronic controllers at all. He did however have the need for a way to easily monitor the temperature of the water in the two large vessels.

The two vessels have been made with pockets in them for temperature sensors – two for the hot water cylinder (one at the top and one at the bottom), and three for the thermal store (for sensors at the top, middle, and bottom).

We used our usual waterproof DS18B20 temperature sensors for this thermometer as they have proven to be accurate and very reliable.

If you need any kind of digital thermometer, thermostat, or data monitoring / datalogging device, email neil@reuk.co.uk with details of your requirements.